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Abstract
In this work, using the effective-mass approximation within a variational
approach, we have studied the behaviour of the binding and transition energies
of a donor shallow impurity in a cylindrical GaAs–Ga0.6Al0.4As quantum well
wire (QWW) as a function of the wire radius, the impurity position and the
applied magnetic field. The QWW is of infinite length with a finite radial
confining potential and the magnetic field is applied parallel to the wire axis. In
our calculations we have considered the 1s-, 2p±- and 3p±-like impurity states.
We have found that for the 1s-like state the impurity binding energy increases
with the magnetic field for impurity positions close to the centre of the wire,
but diminishes for on-edge impurities, highlighting the competition between the
geometrical and magnetic confinement. Also, we have observed that the energy
of the 2p±- and 3p±-like excited states is greater than the energy of the electron
ground state without the presence of the impurity for small radius of the QWW,
a result which is more pronounced for higher magnetic fields. Our results
are in good agreement with previous theoretical reports, with lower binding
and transition energies than those which use infinite confinement potential, as
expected.

1. Introduction

The great progress in the last years of modern technologies in crystal growth have allowed the
production of a high quality of various low-dimensional systems such as quantum wells, QWs
(2D), quantum well wires, QWWs (1D), and quantum dots, QDs (0D), where the quantum
mechanical nature of the carriers plays an important role, and it has motivated an increasing
interest in the studies of their optical and electrical properties [1–7].

A great many theoretical and experimental investigations on these systems in the presence
of shallow impurities have been published [8–18]. The scientific community has the necessity
of understanding the behaviour of shallow impurities in quantum semiconductor devices since
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they can drastically alter the physical properties of these quantum systems. Although magnetic
field effects seem to have less technological significance, they provide a far richer insight into
semiconductor physics than what is possible by studying electron states under the action
of applied electric fields. Magnetic fields have become crucial ingredients of characterization
techniques used to evaluate semiconductor physics. The magnetic field greatly alters the nature
of the electronic states, which manifest themselves in magneto-optic or magneto-transport
phenomena.

Since the pioneer work of Bastard on hydrogenic impurity states in QWs [19] a
great many theoretical works in QWWs have been reported. Many authors have worked
on the measurements and calculation of the binding energies, density of impurity states,
transition energies and photoluminescence spectra associated with shallow impurities in
GaAs–Ga1−x AlxAs QWWs using different techniques, methods and geometries [20–28].
Polaron correction to donor states in a single quantum well has been investigated by several
groups [29–31]. Also, polaron correction to the transition energies of shallow donor impurities
in GaAs superlattices in the presence of a magnetic field has been studied [32, 33] within
second-order perturbation theory in which only the 3D-bulk phonon modes of GaAs were
included. In previous works Villamil et al [22, 23] have calculated the binding energy of
the ground and some excited states as well as some allowed transition energies of an on-
centre impurity in GaAs–Ga1−x Alx As QWWs, using a radial infinite confinement potential
and under the action of a magnetic field applied in the axial direction. To our knowledge, up to
now there are no reports on this subject using a finite radial confinement potential in cylindrical
GaAs–Ga1−x AlxAs QWWs, not only for the impurity ground state but for its excited states,
and as a function of the impurity position along the wire radius under the action of applied
magnetic fields.

In this work we consider a shallow impurity inside an infinite length QWW with finite
radial confining potential and in the presence of a uniform magnetic field applied in the axial
direction. We use the effective-mass approximation within the variational approach to calculate
the binding energy and the transition energies associated with the 1s-, 2p±- and 3p±-like states
of a hydrogenic impurity in a GaAs–Ga1−x AlxAs QWW as a function of the wire radius, the
impurity position inside the wire and an applied magnetic field. In section 2 we present the
theory followed for this calculation. Our results and discussions are presented in section 3,
and conclusions in section 4.

2. Theory

The Hamiltonian of a donor impurity in a cylindrical GaAs–Ga1−x Alx As QWW with radius
R, finite radial confinement potential V (ρ) and in the presence of an applied magnetic field,
in the effective-mass approximation, can be written as

H = 1

2m∗

[
P +

e

c
A

]2

− e2

ε|r − r0| + V(ρ), (1)

where |r − r0| = √
(ρ − ρ0)

2 + z2, r0 is the impurity ion position, measured from the
centre of wire, the z coordinate is the relative separation of the electron from the impurity
ion along the wire axis, ε is the dielectric constant of the GaAs semiconductor inside the
wire, m∗ is the effective electron mass and A(r) is the vector potential of the magnetic
field. For a uniform magnetic field applied in the wire axis direction, the vector potential
can be written as A(r) = 1/2(B × r), with B = B ẑ, and in cylindrical coordinates becomes
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Aρ = Az = 0, Aϕ = (Bρ)/2. The confining potential V(ρ) is defined as

V(ρ) =
{

0, 0 � ρ � R

V0, ρ > R.
(2)

The Hamiltonian of the system in cylindrical coordinates and in effective Rydbergs, R∗,
becomes

H = −∇2 − iγ

(
∂

∂ϕ

)
+

γ 2ρ2

4
− 2

r
+ V(ρ). (3)

The term γ = eh̄B/(2m∗cR∗) is the electron energy in the first Landau level (n = 0) due
to the action of the magnetic field. For donor impurities in GaAs, m∗ = 0.065, ε = 12.58,
a0

∼= 100 Å and R∗ = 5.83 meV.
Following Brown and Spector [12], we assume suitable variational wavefunctions for

the different states, as the product of a hydrogenic part �nlm and the appropriate confluent
hypergeometric functions. The trial wavefunctions for the ground state and some excited
states of the impurity are written as

�nlm(r)

=




Nnlm exp

[
−ξ

2

]
1F1(a01, 1, ξ)�nlm(r, {λnl, βnl, αnl}), ρ � R

Nnlm
1F1(a01, 1, ξR)

U(a′
01, 1, ξR)

exp

[
−ξ

2

]
U(a′

01, 1, ξ)�nlm(r, {λnl, βnl, αnl}), ρ > R.

(4)

In equation (4), Nnlm are the normalization constants of the respective nlm states,
1F1(a01, 1, ξ), and U(a′

01, 1, ξ) are the confluent hypergeometric functions which are the
corresponding solutions for the case of finite confinement potential, in the presence of a
uniform magnetic field parallel to the wire axis, where ξ = eBρ2

2h̄c = 1
2γρ2, and ξR is the

ξ variable evaluated in ρ = R. a01 and a′
01 are the parameters of the confluent hypergeometric

functions for the ground state of the problem inside and outside the wire, respectively, which
are calculated numerically by means of the boundary conditions ∂�in

∂ρ
|ρ=R = ∂�out

∂ρ
|ρ=R . �nlm

are the hydrogenic wavefunctions, corresponding to the nlm states, as was proposed by Latgé
et al [13]. λnl , αnl and βnl are variational parameters used by Chaudhury and Bajaj [14] that
vary according to λnl in such a way that the orthogonalization between the states with different
nlm sub-indices is preserved.

In our calculations we take the binding energy of a hydrogenic impurity, Ebnlm , of a given
like-state �nlm , as the energy necessary to move one electron from the donor level to the first
level of the conduction subband and is calculated by means of the equation

Eb,nlm = E10 − min
λnl

〈�nlm |H|�nlm〉
E10 = γ (1 − 2a01).

(5)

E10 is the first level of the conduction subband in the absence of the Coulomb term.
The term minλnl 〈�nlm |H|�nlm〉 means that the Hamiltonian expected value is minimized with
respect to λnl . The general expression of the Hamiltonian expected value 〈�nlm|H|�nlm〉, for
all �nlm like-states, in a cylindrical QWW of infinite length is written as

�0i = �inside(ρ) = Nnlm exp

[
−ξ

2

]
1F1(a01, 1, ξ)

�0e = �outside(ρ) = Nnlm
1F1(a01, 1, ξR)

U(a′
01, 1, ξR)

exp

[
−ξ

2

]
U(a′

01, 1, ξ)

�nlm(r) =
{

�inside(ρ)�nlm(r, {λnl, βnl, αnl}), ρ � R

�outside(ρ)�nlm(r, {λnl, βnl, αnl}), ρ > R

(6)
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Figure 1. Binding energy as a function of the wire radius,
for the 1s-like state of a donor impurity in a cylindrical
GaAs–Ga0.6Al0.4As QWW, for two magnetic fields, and different
positions of the impurity: 1—(ρi = 0), 2—(ρi = R/5), 3—
(ρi = 2R/5), 4—(ρi = 3R/5), 5—(ρi = 4R/5), 6—(ρi = R).

〈�nlm |H|�nlm〉 = 〈H〉
= E10 − 〈

�∗
0i�

∗�0i (∇2�)
〉 |R

0 − 〈
�∗

0e�
∗�0e(∇2�)

〉 |∞R
− 2

〈
�∗

0i�
∗ 1

r
�0i�

〉 ∣∣∣∣
R

0

− 2

〈
�∗

0e�
∗ 1

r
�0e�

〉∣∣∣∣
∞

R

− 2
〈
�∗

0i�
∗(∇�0i ) • (∇�)

〉 |R
0 − 2

〈
�∗

0e�
∗(∇�0e) • (∇�)

〉 |∞R
− iγ

〈
�∗

0i�
∗�0i

∂�

∂ϕ

〉 ∣∣∣∣
R

0

− iγ

〈
�∗

0e�
∗�0e

∂�

∂ϕ

〉∣∣∣∣
∞

R

. (7)

In equation (7) �inside(ρ),�outside(ρ) are the radial parts of the wavefunctions for any state
of the system inside and outside the well region. The symbol 〈�〉 |ba in equation (7) means
the integral of the argument � between the limits a and b. �∗

0i ,�
∗
0e and �∗ are the complex

conjugates of �0i ,�0e and �, respectively. When B = 0 T, γ = 0 and therefore the two last
terms of the Hamiltonian expected value are zero.

The allowed transition energies are given by

ET(nlm → n′l ′m ′) = |Eb,nlm(R, B) − Eb,n′l′m′(R, B)|, (8)

and the selection rules used for the allowed transitions are

l = l − l ′ = ±1

m = m − m ′ = 0,±1.
(9)

3. Results and discussion

Figure 1 displays the donor binding energy as a function of the wire radius for the 1s-like state
of a donor impurity in a cylindrical GaAs–Ga0.6Al0.4As QWW. The donor impurity is placed in
different radial positions (ρi = 0, R/5, 2R/5, 3R/5, 4R/5 and R, corresponding to curves 1,
2, 3, 4, 5 and 6, respectively) and under the action of the applied magnetic fields of 2 and 20 T.
We found that for any wire radius and for any magnetic field the binding energy diminishes as
the impurity position varies from the centre (ρi = 0) to the edge (ρi = R) of the QWW. For
a given value of the magnetic field and of the impurity position, the binding energy increases
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Figure 2. Width of the donor impurity wavefunction, in the 1s-like state, in the radial direction
(upper figure) and in the z direction (lower figure) in a cylindrical GaAs–Ga0.6Al0.4As QWW as
a function of the wire radius, and for two applied magnetic fields. The impurity is located at
1—(ρi = 0), 2—(ρi = R/5), 3—(ρi = 2R/5), 4—(ρi = 3R/5), 5—(ρi = 4R/5), 6—(ρi = R).

from its bulk value in GaAs as the wire radius is reduced, reaches a maximum value, and then
drops to the bulk value characteristic of the barrier potential for wire radius close to zero. For
R > 100 Å, in curves 3, 4, 5 and 6 we observe that the binding energy with B = 20 T (dashed
lines) is smaller than the binding energy with B = 2 T (solid lines) while in curves 1 and 2 the
binding energy presents a different behaviour. This behaviour of the binding energy can be
understood observing figure 2. In it, we present the numerical results for the widths, (ρ−ρi )

and Z , of the wavefunction for donor positions at ρi = 0, R/5, 2R/5, 3R/5, 4R/5 and R,
and two magnetic fields, B = 2 and 20 T. In this figure, we observe that for the two magnetic
fields considered the wavefunction is more localized in the radial than in the z direction.
Also, the wavefunction is more localized, in the radial and in the z direction, when the donor
impurity is located close to the centre of the wire than when it is located close to the border of
the wire. On the other hand, in the radial direction, the wavefunction is more localized when
the magnetic field is 20 T. In the z direction, the wavefunctions that correspond to curves 3,
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Figure 3. Binding energy as a function of the wire radius for the 2p−-like state of a donor impurity
in a cylindrical GaAs–Ga0.6Al0.4As QWW for two applied magnetic fields, (B = 2, 20 T), and
for different impurity positions: 1—(ρi = 0), 2—(ρi = R/5), 3—(ρi = 2R/5), 4—(ρi = 3R/5),
5—(ρi = 4R/5), 6—(ρi = R).

4, 5 and 6, with B = 20 T, are less localized than those curves that correspond to B = 2 T.
Curves 1 and 2 with B = 20 T indicate that the wavefunction is more localized than those
curves corresponding to B = 2 T. This behaviour of the wavefunction is reflected in the donor
binding energy in all curves.

Figures 3(a), (b) present the binding energy as a function of the wire radius for the
2p−-like state of a donor impurity in a cylindrical GaAs–Ga0.6Al0.4As QWW for different
impurity positions and applied magnetic fields. From these results it is observed that for all
impurity positions, the wire radius for which the 2p−-like state is bound (its energy is lower
than that of the first electron level of the QWW without the presence of the impurity) diminishes
with the magnetic field. Also, it is observed that depending on the impurity position and the
strength of the magnetic field the binding energy changes with the radius of the wire. For
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Figure 4. Width of the donor impurity wavefunction, in the 2p−-like state, in the radial direction
(upper figure), and in the z direction (lower figure) in a cylindrical GaAs–Ga0.6Al0.4As QWW
as a function of the wire radius, and for two applied magnetic fields. The impurity is located at
1—(ρi = 0), 2—(ρi = R/5), 3—(ρi = 2R/5), 4—(ρi = 3R/5), 5—(ρi = 4R/5), 6—(ρi = R).

example, for some curves, the binding energy increases up to a maximum at a given radius
and diminishes for higher radii. This behaviour is more evident for B = 20 T.

The results for the width of the wavefunction for donor impurity positions along the wire
radius, at ρi = 0, R/5, 2R/5, 3R/5, 4R/5 and R, with B equal to 6 and 20 T, in the radial and
z directions, are shown in figure 4 as a function of the wire radius. We observe the following:
(i) the wavefunction is more localized in the radial direction than in the z direction for the
same magnetic field and ρi ; (ii) in the radial direction the wavefunction is more localized
with B = 20 T than with B = 2 T; (iii) for R < 50 Å the localization is not sensitive to
the magnetic field and the geometric confinement overwhelms the magnetic one; (iv) as the
radius of the wire diminishes, the width of the wavefunction reaches a minimum value, that
is to say a maximum of localization, and then it increases, reflecting the delocalization of the
wavefunction within the GaAs region and its spread-out in the Ga1−x AlxAs region; (v) the
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Figure 5. Binding energy of (a) 1s-, (b) 2p−- and (c) 3p−-like states of a donor impurity in a
cylindrical GaAs–Ga0.6Al0.4As QWW as a function of the impurity position for a 200 Å wire radius
and for different magnetic fields: 1—(B = 0 T), 2—(B = 2 T), 3—(B = 6 T), 4—(B = 10 T),
5—(B = 20 T).

behaviour of the wavefunction, in the radial and z directions, corresponds to the behaviour
of the binding energy for the same magnetic field and ρi ; that is to say, the binding energy
increases when the wavefunction is more localized. We have found similar results for the
3p−-like state.

The binding energies of the ground and some excited states of an impurity in a cylindrical
GaAs–Ga0.6Al0.4As QWW as a function of the impurity position for a wire with R = 200 Å
and different magnetic fields are presented in figure 5. This figure shows that for the 2p−- and
3p−-like states and for every impurity position the binding energy increases with the magnetic
field. It is good to notice that the binding energy of the 3p−-like state is negative, which
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Figure 6. 1s → 2p± and 1s → 3p± infrared transition energies of a donor impurity in a
GaAs–Ga0.6Al0.4As QWW 200 Å in radius, as a function of the impurity position along the wire
radius for different applied magnetic fields.

according to our definition of binding energy, equation (5), means that this state is not bound;
that is, the 3p− energy levels are higher than the electron ground state in the well wire without
the impurity. For the 1s-like state the binding energy decreases as the impurity approaches the
edge of the well.

The transition energies 1s → 2p± and 1s → 3p± versus impurity position for a QWW
with radius of 200 Å and different magnetic fields are displayed in figure 6. We observe that
the 1s → 2p− and 1s → 3p− transitions diminish with the magnetic field while 1s → 2p+

and 1s → 3p+ transitions increase with the magnetic field for every impurity position. For
B = 0, the 1s → 2p− (1s → 3p−) and 1s → 2p+ (1s → 3p+) transition energies coincide and
for that reason we only have presented the curve for the transitions 1s → 2p+ and 1s → 3p−.
For each magnetic field, the 1s → 3p− and 1s → 3p+ transition energies diminish when the
impurity goes from the centre (ρi = 0) to the border (ρi = R) of the wire. On the other
hand, the transition energies 1s → 2p− and 1s → 2p+ for all magnetic fields vary, diminishing
up to a certain impurity position and increasing as the impurity approaches the barrier edge.
In comparing our results for the transitions 1s → 2p− and 1s → 3p− with those reported by
Villamil and Porras-Montenegro [22], for the infinite confinement potential, figure 6(a) in this
reference, we have found a very good agreement, but with lower values in the present report,
as expected, because of the finite confinement.

4. Conclusions

In this work, using the effective mass-approximation within the variational approach, we have
calculated the binding and the allowed transition energies between the 1s-, 2p±- and 3p±-like
states of a hydrogenic donor impurity in a cylindrical GaAs–Ga1−x Alx As QWW, under the
action of a magnetic field applied in the axial direction, using a finite confinement potential.
Our results are in good agreement with previous theoretical reports, but with lower binding and
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transition energies than in those works which use infinite confinement potential, as expected.
We have found that the 2p±- and 3p±-like excited states are not bounded in a QWW with
small radius, a radius which diminishes with the applied magnetic field. We have found that
the binding energy of the impurity ground state diminishes when the impurity position varies
from the centre to the edge of the QWW. According to our results the impurity position inside
the QWW is crucial in understanding the optical responses of these systems associated with
impurity states. We believe the present calculation will be of importance in the understanding
of future experimental work in this subject.

Acknowledgments

The authors gratefully acknowledge Universidad de Sucre for total financial support to develop
this work. Also, the authors gratefully acknowledge Dr Alberto Bohórquez for useful
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